

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-09/0373 of 1 June 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Apolo MEA Injection system Resifix Pure Epoxi for concrete

Bonded fastener for use in concrete

Apolo MEA Befestigungssysteme GmbH Industriestraße 6 86551 Aichach DEUTSCHLAND

Apolo MEA Befestigungssysteme GmbH, Plant2 Germany

25 pages including 3 annexes which form an integral part of this assessment

EAD 330499-00-0601

European Technical Assessment ETA-09/0373

English translation prepared by DIBt

Page 2 of 25 | 1 June 2018

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z34955.18 8.06.01-165/18

European Technical Assessment ETA-09/0373

English translation prepared by DIBt

Page 3 of 25 | 1 June 2018

Specific Part

1 Technical description of the product

The "Apolo MEA Injection system Resifix Pure Epoxi for concrete" is a bonded anchor consisting of a cartridge with Apolo MEA injection mortar Resifix Pure Epoxi and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter \emptyset 8 to \emptyset 32 mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1, C 2, C 4 and C 6
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1, C 3, C 5 and C 7
Displacements (static and quasi-static loading)	See Annex C 8 to C 10
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 2, C 3, C 6 to C 8 and C 10

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Z34955.18 8.06.01-165/18

European Technical Assessment ETA-09/0373

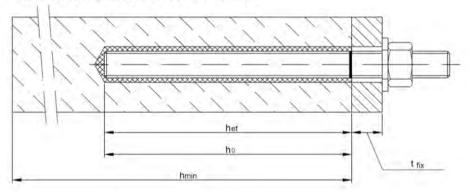
Page 4 of 25 | 1 June 2018

English translation prepared by DIBt

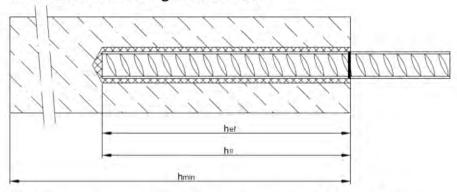
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

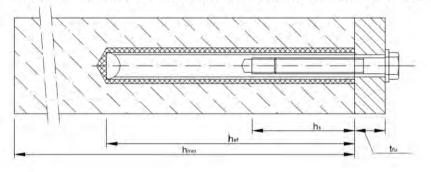
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 1 June 2018 by Deutsches Institut für Bautechnik


Dr.-Ing. Lars Eckfeldt p.p. Head of Department

beglaubigt: Baderschneider


Z34955.18 8.06.01-165/18


Installation threaded rod M8 to M30

Installation reinforcing bar Ø8 to Ø32

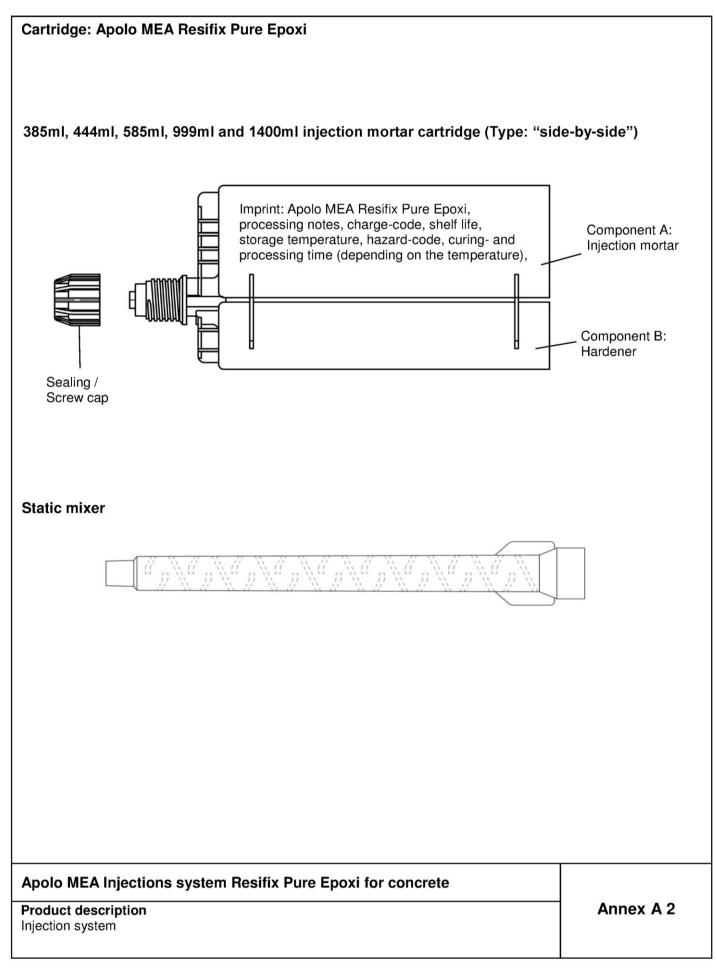
Installation Internal threaded anchor rod IG-M6 to IG-M20

t_{fix} = thickness of fixture

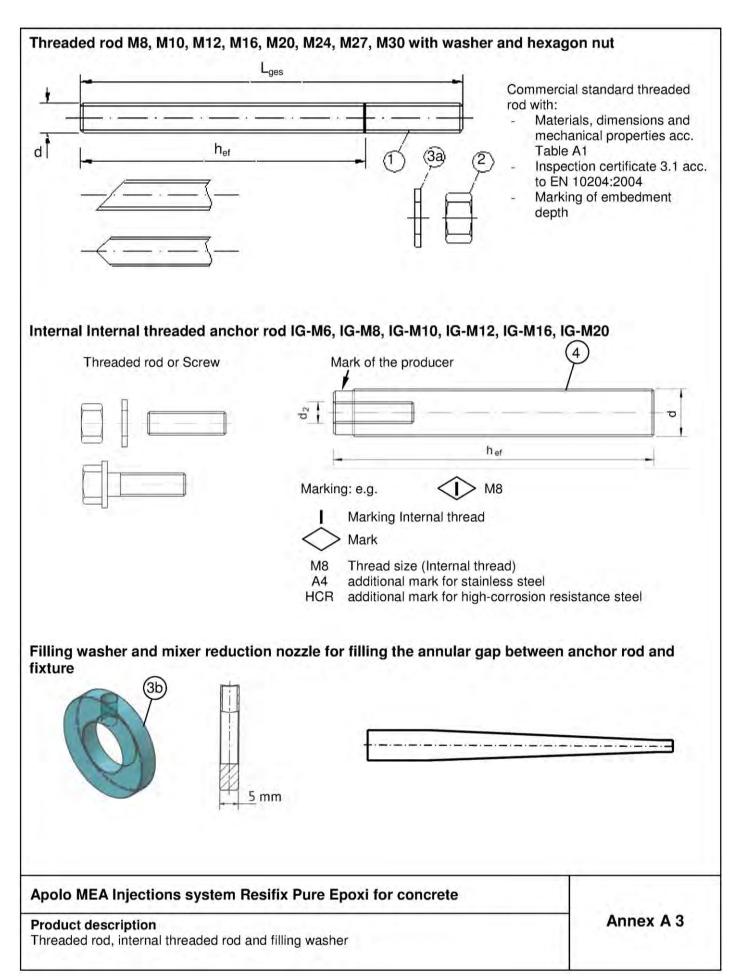
h_{ef} = effective anchorage depth

h₀ = depth of drill hole

h_{min} = minimum thickness of member


Apolo MEA Injections system Resifix Pure Epoxi for concrete

Product description


Installed condition

Annex A 1

	Designation	Material		
	, zinc plated (Steel acc. to EN 10			
				40 µm acc. to EN ISO 1461:2009 and
N I	SO 10684:2004+AC:2009 or sherard	dized ≥ 40 µm acc. to DI		
			4.6	f_{uk} =400 N/mm ² ; f_{yk} =240 N/mm ² ; A_5 > 8% fracture elongation
		Property class	4.8	f_{uk} =400 N/mm ² ; f_{yk} =320 N/mm ² ; $A_5 > 8\%$ fracture elongation
1	Anchor rod	acc. to	5.6	f_{uk} =500 N/mm ² ; f_{yk} =300 N/mm ² ; $A_5 > 8\%$ fracture elongation
		EN ISO 898-1:2013	5.8	f_{uk} =500 N/mm ² ; f_{yk} =400 N/mm ² ; $A_5 > 8\%$ fracture elongation
			8.8	f_{uk} =800 N/mm ² ; f_{yk} =640 N/mm ² ; $A_5 > 12\%$ fracture elongation
		Property class	4	for anchor rod class 4.6 or 4.8
2	Hexagon nut	acc. to	5	for anchor rod class 5.6 or 5.8
		EN ISO 898-2:2012	8	for anchor rod class 8.8
3а	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Steel, zinc plated, hot-	dip ga	Ivanised or sherardized
3b	Filling washer			
_	late weed the second and accordance and	Property class	5.8	f_{uk} =500 N/mm ² ; f_{yk} =400 N/mm ² ; $A_5 > 8\%$ fracture elongation
4	Internal threaded anchor rod	acc. to EN ISO 898-1:2013	8.8	f_{uk} =800 N/mm ² ; f_{yk} =640 N/mm ² ; A_5 > 8% fracture elongation
tair	less steel A2 (Material 1.4301 / 1	.4303 / 1.4307 / 1.4567	oder 1	1.4541, acc. to EN 10088-1:2014)
nd				
tair	iless steel A4 (Material 1.4401 / 1			
		Property class	50	f_{uk} =500 N/mm ² ; f_{yk} =210 N/mm ² ; $A_5 > 12\%$ fracture elongation
1	Anchor rod ¹⁾⁴⁾	acc. to EN ISO 3506-1:2009	70	f_{uk} =700 N/mm ² ; f_{yk} =450 N/mm ² ; $A_5 > 12\%$ fracture elongation
			80	f_{uk} =800 N/mm ² ; f_{yk} =600 N/mm ² ; $A_5 > 12\%$ fracture elongation
_	Hexagon nut 1)4)	Property class	50	for anchor rod class 50
2	Hexagon nut	acc. to EN ISO 3506-1:2009	70 80	for anchor rod class 70 for anchor rod class 80
	Washer,	211100 0000 1.2000	80	ioi aliciloi rod class 80
	(z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)			/ 1.4307 / 1.4567 or 1.4541, EN 10088-1:2014 / 1.4571 / 1.4362 or 1.4578, EN 10088-1:2014
3b	Filling washer ⁵⁾	Property class		5 500 N/22 22 5 040 N/22 22 A 00/ (real year)
4	Internal threaded anchor rod 1)2)	acc. to	50	f_{uk} =500 N/mm ² ; f_{yk} =210 N/mm ² ; A_5 > 8% fracture elongation
		EN ISO 3506-1:2009	70	f_{uk} =700 N/mm ² ; f_{yk} =450 N/mm ² ; $A_5 > 8\%$ fracture elongation
igh	corrosion resistance steel (Mate	rial 1.4529 or 1.4565, a		
	40	Property class	50	f_{uk} =500 N/mm ² ; f_{yk} =210 N/mm ² ; $A_5 > 12\%$ fracture elongation
1	Anchor rod ¹⁾	acc. to	70	f_{uk} =700 N/mm ² ; f_{yk} =450 N/mm ² ; $A_5 > 12\%$ fracture elongation
		EN ISO 3506-1:2009	80	f_{uk} =800 N/mm ² ; f_{yk} =600 N/mm ² ; $A_5 > 12\%$ fracture elongation
_		Property class	50	for anchor rod class 50
2	Hexagon nut 1)	acc. to	70	for anchor rod class 70
		EN ISO 3506-1:2009	80	for anchor rod class 80
3a	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Material 1.4529 or 1.45	565, a	cc. to EN 10088-1: 2014
3b	Filling washer			
4	Internal threaded anchor rod 1) 2)	Property class acc. to	50	f_{uk} =500 N/mm ² ; f_{yk} =210 N/mm ² ; $A_5 > 8\%$ fracture elongation
		EN ISO 3506-1:2009	70	f_{uk} =700 N/mm ² ; f_{yk} =450 N/mm ² ; $A_5 > 8\%$ fracture elongation
	Property class 70 for anchor rods up to for IG-M20 only property class 50	M24 and Internal threaded a		

Apolo MEA Injections system Resifix Pure Epoxi for concrete	
Product description Materials	Annex A 4

English translation prepared by DIBt Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32 hef Minimum value of related rip area $f_{R,min}$ according to EN 1992-1-1:2004+AC:2010 Rib height of the bar shall be in the range $0.05d \le h \le 0.07d$ (d: Nominal diameter of the bar; h: Rip height of the bar) **Materials** Table A2: Reinforcing bars Bars and de-coiled rods class B or C Rebar f_{vk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 EN 1992-1-1:2004+AC:2010, Annex C $f_{uk} = f_{tk} = k \cdot f_{vk}$

Apolo MEA Injections system Resifix Pure Epoxi for concrete	
Product description	Annex A 5
Materials reinforcing bar	

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.
- Seismic action for Performance Category C2: M12 and M16 (except hot-dip galvanised rods).

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel A2 resp. A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position
 of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to
 supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The Anchorages are designed in accordance to:
 - FprEN 1992-4:2017 and Technical Report TR055

Installation:

- Dry or wet concrete.
- Flooded holes (not sea water).
- Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded sleeve.

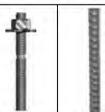
Apolo MEA Injections system Resifix Pure Epoxi for concrete	
Intended Use Specifications	Annex B 1

Table B1: Installation parameters for threaded rod									
Anchor size		М 8	M 10	M 12	M 16	M 20	M 24	M 27	М 30
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	16	20	24	27	30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective anchorage depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective affortage depth	h _{ef,max} [mm] =	96	120	144	192	240	288	324	360
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Maximum torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Minimum thickness of member	h _{min} [mm]	h . + 30 mm				h _{ef} + 2d ₀			
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

Rebar size		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Outer diameter of anchor	$d_{nom} [mm] =$	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	$d_0 [mm] =$	12	14	16	18	20	24	32	35	40
Effective anchorage depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Effective anchorage depth	$h_{ef,max}$ [mm] =	96	120	144	168	192	240	300	336	384
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm					h _{ef} + 2d ₀			
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

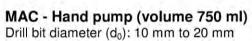
Table B3: Installation parameters for internally threaded sleeve


	•						
Anchor size		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Internal diameter of anchor	d ₂ [mm] =	6	8	10	12	16	20
Outer diameter of anchor 1)	$d_{nom} [mm] =$	10	12	16	20	24	30
Nominal drill hole diameter	$d_0 [mm] =$	12	14	18	24	28	35
Effective anchorage depth	h _{ef,min} [mm] =	60	70	80	90	96	120
Effective anchorage depth	$h_{ef,max}[mm] =$	120	144	192	240	288	360
Diameter of clearance hole in the fixture	d _f [mm] =	7	9	12	14	18	22
Maximum torque moment	T _{inst} [Nm] ≤	10	10	20	40	60	100
Thread engagement length Min/max	I _{IG} [mm] =	8/20	8/20	10/20	12/30	16/40	20/50
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} +	- 2d ₀	
Minimum spacing	s _{min} [mm]	50	60	80	100	120	150
Minimum edge distance	c _{min} [mm]	50	60	80	100	120	150

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Apolo MEA Injections system Resifix Pure Epoxi for concrete	
Intended Use	Annex B 2
Installation parameters	

Table B4: Parameter cleaning and setting tools



Threaded Rod	Rebar	Internal threaded Anchor rod	d₀ Drill bit - Ø HD, HDB, CD			d _{b,min} min. Brush - Ø	Piston plug	Installation direction and of piston plug		
(mm)	(mm)	(mm)	(mm)		(mm)	(mm)		1	\rightarrow	1
M8			10	RBT10	12	10,5			10.74	100,000
M10	8	IG-M6	12	RBT12	14	12,5	16.			1 A
M12	10	IG-M8	14	RBT14	16	14,5		7.7	7-11	19
	12		16	RBT16	18	16,5			- 131 1	1002-00
M16	14	IG-M10	18	RBT18	20	18,5	VS18			
	16		20	RBT20	22	20,5	VS20			
M20	20	IG-M12	24	RBT24	26	24,5	VS24	h .		
M24		IG-M16	28	RBT28	30	28,5	VS28		h _{ef} >	all
M27	25		32	RBT32	34	32,5	VS32		250 mm	250 mm
M30	28	IG-M20	35	RBT35	37	35,5	VS35			
	32		40	RBT40	41,5	40,5	VS40			

Drill hole depth (h₀): < 10 d_{nom} Only in non-cracked concrete

CAC - Rec. compressed air tool (min 6 bar)

Drill bit diameter (d₀): all diameters

Piston plug for overhead or horizontal installation VS

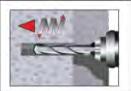
Drill bit diameter (d₀): 18 mm to 40 mm

Steel brush RBT

Drill bit diameter (do): all diameters

from the constraints of	2 - 1 / 22 / 4 / C - C - C - C - D - C	TERROR STATE	
Apolo MEA In	jections syster	n Resifix Pure	Epoxi for concrete

Intended Use

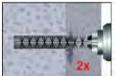

Cleaning and setting tools

Annex B 3

Installation instructions

Drilling of the bore hole

1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3), with hammer (HD), hollow (HDB) or compressed air (CD) drilling. The use of a hollow drill bit is only in combination with a sufficient vacuum permitted.


In case of aborted drill hole: the drill hole shall be filled with mortar

Attention! Standing water in the bore hole must be removed before cleaning.

MAC: Cleaning for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ (uncracked concrete only!); all drilling methods

2a. Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump¹⁾ (Annex B 3) a minimum of two times.

2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush according to Table B4(observe minimum brush diameter d_{b,min}) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension must be used.

2c. Finally blow the hole clean again with a hand pump¹⁾ (Annex B 3) a minimum of two times.

CAC: Cleaning for all bore hole diameter in uncracked and cracked concrete

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of two times.

If the bore hole ground is not reached with the brush, a brush extension must be used.

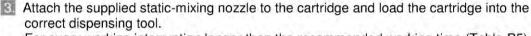
Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

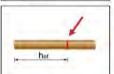
Apolo MEA Injections system Resifix Pure Epoxi for concrete

Intended Use

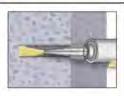
Installation instructions


Annex B 4

¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment depth up to 10d_{nom} also in cracked concrete with hand-pump.



Installation instructions (continuation)


For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.

4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.

Frior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey or red colour.

6. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. Observe the gel-/ working times given in Table B5.

Piston Plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:

- Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth hef > 250mm
- Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm

8. Push the anchor rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor shall be free of dirt, grease, oil or other foreign material.

Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).

10. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).

11. After full curing, the add-on part can be installed with up to the max. torque moment (Table B1 or B3) by using a calibrated torque wrench. It can be optional filled the annular gap between anchor and fixture with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

Apolo MEA Injections system Resifix Pure Epoxi for concrete

Intended Use

Installation instructions (continuation)

Annex B 5

Table B5:	Mi	nimum cu	ring time		
Concrete	tem	perature	Gelling-working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete
+ 5 °C	to	+ 9 °C	120 min	50 h	100 h
+ 10 °C	to	+ 19 °C	90 min	30 h	60 h
+ 20 °C	to	+ 29 °C	30 min	10 h	20 h
+ 30 °C	to	+ 39 °C	20 min	6 h	12 h
+	40 °C		12 min	4 h	8 h
Cartridge	temp	perature		+5°C to +40°C	

Annex B 6

Tab	le C1:	Characteristic values for ste resistance of threaded rods	el tensio	n res	istar	ice a	nd si	teel s	shear	•		
Size					M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Chara	cteristic tens	ion resistance, Steel failure										
Steel,	Property class	4.6 and 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Steel,	Property class	s 5.6 and 5.8	$N_{Rk,s}$	[kN]	18	29	42	78	122	176	230	280
Steel,	Property class	8.8	$N_{Rk,s}$	[kN]	29	46	67	125	196	282	368	449
Stainle	ess steel A2, A	4 and HCR, Property class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Stainless steel A2, A4 and HCR, Property class 70			$N_{Rk,s}$	[kN]	26	41	59	110	171	247	-	-
Stainless steel A4 and HCR, Property class 80			$N_{Rk,s}$	[kN]	29	46	67	126	196	282	-	-
Chara	cteristic tens	ion resistance, Partial factor										
Steel, Property class 4.6			γ _{Ms,N} 1)	[-]	2,0							
Steel,	Property class	3 4.8	γ _{Ms,N} 1)	[-]	1,5							
Steel,	Property class	3 5.6	γMs,N 1)	[-]	2,0							
Steel,	Property class	s 5.8	γ _{Ms,N} 1)	[-]	1,5							
Steel,	Property class	8.8	γ _{Ms,N} 1)	[-]	1,5							
Stainle	ess steel A2, A	4 and HCR, Property class 50	γ _{Ms,N} 1)	[-]	2,86							
Stainle	ess steel A2, A	A4 and HCR, Property class 70	γ _{Ms,N} 1)	[-]				1,	87			
Stainle	ess steel A4 a	nd HCR, Property class 80	γ _{Ms,N} 1)	[-]				1	,6			
Chara	cteristic she	ar resistance, Steel failure										
	Steel, Prope	ty class 4.6 and 4.8	$V^0_{Rk,s}$	[kN]	9	14	20	38	59	85	110	135
Without lever arm	Steel, Prope	ty class 5.6 and 5.8	$V^0_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Steel, Property class 8.8		$V^0_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224	
out k	Stainless ste	el A2, A4 and HCR, Property class 50	$V^0_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
With	Stainless ste	el A2, A4 and HCR, Property class 70	$V^0_{Rk,s}$	[kN]	13	20	30	55	86	124	-	-
	Stainless ste	el A4 and HCR, Property class 80	$V^0_{Rk,s}$	[kN]	15	23	34	63	98	141	-	-

Stainless steel A4 and HCR, Property class 80				[Nm]	30	59	105	266	519	896	-	-
	Chara	cteristic shear resistance, Partial factor										
	Steel,	Property class 4.6	γ _{Ms,V} 1)	[-]				1,	67			
Steel, Property class 4.8				[-]				1,	25			
	Steel,	Property class 5.6	γ _{Ms,V} 1)	[-]	1,67							
	Steel, Property class 5.8			[-]	1,25							
	Steel, Property class 8.8			[-]				1,	25			
	Stainless steel A2, A4 and HCR, Property class 50			[-]				2,	38			
	Stainless steel A2, A4 and HCR, Property class 70			[-]	1,56							
Stainless steel A4 and HCR. Property class 80			ν _{Ms V} 1)	[-]				1.	33			

 $M^0_{Rk,s}$

 $M^0_{Rk,s}$

 $M^0_{Rk,s}$

 $M^0_{Rk,s}$

 $M^0_{Rk,s}$

[Nm]

[Nm]

[Nm]

[Nm]

[Nm]

Steel, Property class 4.6 and 4.8

Steel, Property class 5.6 and 5.8

Stainless steel A2, A4 and HCR, Property class 50

Stainless steel A2, A4 and HCR, Property class 70

Steel, Property class 8.8

With lever arm

Apolo MEA Injections system Resifix Pure Epoxi for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

¹⁾ in absence of national regulation

Table C2: Characteristic values of tension loads under static, quasi-static action and seismic action (performance category C1 and C2)

Anchor size threaded	rod		Т	M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure	roa			M 8	M 10	M 12	M 16	M 20	W24	W 27	M 30	
Steel failure		LNI	ri-Nn				T	-l-1- 04				
Obavastavistia tamaiam v		N _{Rk,s}	[kN]					able C1				
Characteristic tension r	esistance	N _{Rk,eq,C1}	[kN]		-			N _{Rk,s}				
Dest'-Life-ten		$N_{Rk,eq,C2}$	[kN]	N	PD	1,0 •	$N_{Rk,s}$		rformance	Determined	d (NPD)	
Partial factor	d	γMs,N	[-]				see Ta	able C1				
	d concrete cone failur		/OF									
	sistance in non-cracked	1		15	15	15	1.4	10	10	10	10	
Temperature range I: 40°C/24°C	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	15	15	15	14	13	12	12	12	
	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	15	14	13	10	9,5	8,5	7,5	7,0	
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5	
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0	
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5	
72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5	
Characteristic bond res	istance in cracked conc	rete C20/25										
	l	τ _{Rk,cr}	[N/mm²]	7,0	7,0	7,5	6,5	6,0	5,5	5,5	5,5	
	dry and wet concrete	τ _{Rk,eq,C1}	[N/mm²]	5,9	7,0	7,1	6,2	5,7	5,5	5,5	5,5	
Temperature range I:		τ _{Rk,eq,C2}	[N/mm²]		PD	2,4	2,2			Determined	<u> </u>	
40°C/24°C		τ _{Rk,cr}	[N/mm ²]	7,0	7,0	7,5	6,0	5,0	4,5	4,0	4,0	
	flooded bore hole	τ _{Rk,eq,C1}	[N/mm ²]	5,9	7,0	7,1	5,8	4,8	4,5	4,0	4,0	
		τ _{Rk,eq,C2}	[N/mm²]		PD	2,4	2,1			Determined	,	
		$ au_{Rk,cr}$	[N/mm ²]	4,5	4,5	4,5	4,0	3,5	3,5	3,5	3,5	
	dry and wet concrete	τ _{Rk,eq,C1}	[N/mm ²]	3,7	4,5	4,3	3,8	3,4	3,5	3,5	3,5	
Temperature range II:		τ _{Rk,eq,C2}	[N/mm ²]	N	PD	1,4	1,4	No Pe		Determined	d (NPD)	
60°C/43°C		$ au_{Rk,cr}$	[N/mm ²]	4,5	4,5	4,5	4,0	3,5	3,5	3,5	3,5	
	flooded bore hole	τ _{Rk,eq,C1}	[N/mm ²]	3,7	4,5	4,3	3,8	3,4	3,5	3,5	3,5	
		τ _{Rk,eq,C2}	[N/mm ²]	Ν	PD	1,4	1,4	No Pe	rformance	Determined	(NPD)	
	dry and wet concrete	τ _{Rk,cr}	[N/mm ²]	4,0	4,0	4,0	3,5	3,0	3,0	3,0	3,0	
		τ _{Rk,eq,C1}	[N/mm ²]	3,2	4,0	3,9	3,4	3,0	3,0	3,0	3,0	
Temperature range III:		τ _{Rk,eq,C2}	[N/mm²]	N	PD	1,3	1,2	No Pe	rformance	Determined	(NPD)	
72°C/43°C		τ _{Rk,cr}	[N/mm²]	4,0	4,0	4,0	3,5	3,0	3,0	3,0	3,0	
		τ _{Rk,eq,C1}	[N/mm²]	3,2	4,0	3,9	3,4	3,0	3,0	3,0	3,0	
		τ _{Rk,eq,C2}	[N/mm²]	N	PD	1,3	1,2	No Pe	rformance	Determined	d (NPD)	
			5/30			,		02			, ,	
l			0/37				1,	04				
Increasing factors for co (For static or quasi-stat		C35	5/45	1,07								
,	ic loading)		0/50	1,08								
Ψc		C45	5/55	1,09								
		C50	0/60	1,10								
Concrete cone failure												
Non-cracked concrete		k _{ucr,N}	[-]				11	1,0				
Cracked concrete		k _{cr,N}	[-]				7	,7				
Edge distance		C _{cr,N}	[mm]					h _{ef}				
Axial distance		S _{cr,N}	[mm]					C _{cr,N}				
Splitting failure								0.11.1				
	h/h _{ef} ≥ 2,0						1,0) h _{ef}				
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]				$2 \cdot h_{ef} \left(2\right)$	$,5-\frac{h}{h_{ef}}$				
h/h _{ef} ≤ 1,3							2,4	∤ h _{ef}				
				2,4 H _{ef} 2 C _{cr,sp}								
		S _{cr,sp}	[mm]				2 0	cr,sp				
Axial distance Installation factor (dry a		S _{cr,sp} γ _{inst}	[mm] [-]		1	,2	2 c	cr,sp	1	,4		

Apolo MEA Injections system Resifix Pure Epoxi for concrete

Performances

Characteristic values of tension loads under static, quasi-static action and seismic action (performance category C1 and C2)

Annex C 2

	stic values o tion (perform						si-stati	c actio	on and	I	
Anchor size threaded rod			М 8	M 10	M 12	M 16	M 20	M24	M 27	М 30	
Steel failure without lever arm											
	$V^0_{Rk,s}$	[kN]				see Ta	ıble C1				
Characteristic shear resistance	$V_{Rk,eq,C1}$	[kN]	0,87 •	$V^0_{Rk,s}$	(),88 • V ⁰ _{Rk}	,s	(),80 • V ⁰ _{Rk}	,s	
	$V_{Rk,eq,C2}$	[kN]	NF	PD	0,80	· V ⁰ _{Rk,s}	No Perf	ormance l	Determine	d (NPD)	
Partial factor	γ̃Ms,∨	[-]				see Ta	ble C1				
Ductility factor	k ₇	[-]				1	,0				
Steel failure with lever arm											
	M ⁰ _{Rk,s}	[Nm]				see Ta	ıble C1				
Characteristic bending moment	M ⁰ _{Rk,eq,C1}	[Nm]	No Performance Determined (NPD)								
	M ⁰ _{Rk,eq,C2}	[Nm]			1401 011		octorrillino.	(141 B)			
Partial factor	γMs,V	[-]				see Ta	ıble C1				
Concrete pry-out failure											
Factor	k ₈	[-]				2	,0				
Installation factor	Yinst	[-]	1,0								
Concrete edge failure	•										
Effective length of fastener	I _f	[mm]	$I_t = min(h_{ef}; 8 d_{nom})$								
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30	
Installation factor	γinst	[-]			•	1	,0	•	•		
Factor for annular gap	$\alpha_{ m gap}$	[-]	0,5 (1,0)1)								

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Apolo MEA Injections system Resifix Pure Epoxi for concrete	
Performances Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1 and C2)	Annex C 3

Table C4:	Characteristic values of tension loads for internal threaded sleeves under
	static and quasi-static action

Anchor size internally	threaded sleeves			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
Steel failure ¹⁾										
Characteristic tension re		N _{Rk,s}	[kN]	10	17	29	42	76	123	
Steel, strength class 5.8	3	™Rk,s		10	17			70	123	
Partial factor		γMs,N	[-]			1	,5			
Characteristic tension re		$N_{RK,s}$	[kN]	16	27	46	67	121	196	
Steel, strength class 8.8	3									
Partial factor	- ciatana a	γMs,N	[-]		<u> </u>	1	,5			
Characteristic tension re Stainless Steel A4, Stre		$N_{Rk,s}$	[kN]	14	26	41	59	110	124	
Partial factor	rigin class 70	γMs,N	[-]			1,87			2,86	
· cirtici releter	d concrete cone failure	/ MS,N	1 11			1,07			2,00	
· · · · · · · · · · · · · · · · · · ·	stance in non-cracked concr	ata C20/25								
Temperature range I:	dry and wet concrete	1		15	15	14	13	12	12	
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	14	13	10	9,5	8,5	7,0	
Temperature range II:	dry and wet concrete			9,5	9,0	8,5	8,0	7,5	7,5	
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	9,5	9,0	8,5	7,5	7,0	6.0	
Temperature range III:	dry and wet concrete		F11/ 07	8,5	8,0	7,5	7,0	7,0	6,5	
72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	8,5	8,0	7,5	7,0	6,0	5,5	
Characteristic bond resi	stance in cracked concrete C	20/25	_							
Temperature range I:	dry and wet concrete		[N1/0]	7,0	7,5	6,5	6,0	5,5	5,5	
40°C/24°C	flooded bore hole	τ _{Rk,cr}	[N/mm ²]	7,0	7,5	6,0	5,0	4,5	4,0	
Temperature range II:	dry and wet concrete		[N/mm²]	4,5	4,5	4,0	3,5	3,5	3,5	
60°C/43°C	flooded bore hole	τ _{Rk,cr}	[14/111112]	4,5	4,5	4,0	3,5	3,5	3,5	
Temperature range III:	dry and wet concrete	Τ	[N/mm²]	4,0	4,0	3,5	3,0	3,0	3,0	
72°C/43°C	flooded bore hole	τ _{Rk,cr}	1, ,	4,0	4,0	3,5	3,0	3,0	3,0	
			25/30	1,02						
			30/37	1,04 1,07						
Increasing factors for co	oncrete		35/45 40/50	1,07						
Ψc			45/55	1,08						
			50/60	1,10						
Concrete cone failure			30/00				10			
Non-cracked concrete		k _{ucr,N}	[-]			11	1,0			
Cracked concrete		k _{cr,N}	[-]							
Edge distance		C _{cr,N}	[mm]		7,7 1,5 h _{ef}					
Axial distance			[mm]				C _{cr,N}			
Splitting failure		S _{cr,N}	[IIIIII]				cr,N			
Splitting failure	h/h > 0.0					1.0	١ ١-			
	h/h _{ef} ≥ 2,0	_				1,0	h _{ef}			
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]			$2 \cdot h_{ef} \left(2 \right)$	$,5-\frac{h}{h_{ef}}$			
h/h _{ef} ≤ 1,3						2,4	h _{ef}			
Axial distance		S _{cr,sp}	[mm]			2 0	cr,sp			
Installation factor (dry a	nd wet concrete)	γinst	[-]		1,2			1,4		
Installation factor (flood	ed bore hole)	γinst	[-]			1	,4			
1) =	, 									

Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internal threaded rod and the fastening element.

²⁾ For IG-M20 strength class 50 is valid

Apolo MEA Injections system Resifix Pure Epoxi for concrete	
Performances Characteristic values of tension loads for internal threaded sleeves under static and quasi-static action	Annex C 4

Table C5:	Characteristic values of shear loads for internal threaded sleeves under
	static and quasi-static action

Anchor size for internally threaded	sleeves		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure without lever arm ¹⁾								
Characteristic shear resistance, Steel, strength class 5.8	$V^0_{Rk,s}$	[kN]	5	9	15	21	38	61
Partial factor	γMs,V	[-]			1,2	.5		
Characteristic shear resistance, Steel, strength class 8.8	V ⁰ _{Rk,s}	[kN]	8 14 23 34 60					98
Partial factor	γMs,V	[-]			1,2	.5		
Characteristic shear resistance, Stainless Steel A4 Strength class 70 ²⁾	V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40
Partial factor	γMs,V	[-]	1,56					
Ductility factor	k ₇	[-]	1,0					
Steel failure with lever arm1)								
Characteristic bending moment, Steel, strength class 5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
Partial factor	γMs,V	[-]	1,25					
Characteristic bending moment, Steel, strength class 8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519
Partial factor	γMs,V	[-]			1,2	.5		
Characteristic bending moment, Stainless Steel A4 Strength class 70 ²⁾	M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	454
Partial factor	γMs,V	[-]			1,5	6		
Concrete pry-out failure								
Factor	k ₈	[-]			2,0)		
Installation factor	γinst	[-]			1,0)		
Concrete edge failure								
Effective length of fastener	I _f	[mm]			$I_f = min(h_e)$	_f ; 8 d _{nom})		
Outside diameter of fastener	d _{nom}	[mm]	10	12	16	20	24	30
Installation factor	γinst	[-]			1,0)		

Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internal threaded rod and the fastening element.

Performances

Characteristic values of shear loads for internal threaded sleeves under static and quasi-static action

Annex C 5

²⁾ For IG-M20 strength class 50 is valid

1,4

	haracteristic va eismic action (p					J. U II	,	,	3.3		a.i	-
Anchor size reinforcir	ng bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
		N _{Rk,s}	[kN]					A _s • f _{uk} ¹⁾				
Characteristic tension r	esistance	N _{Rk,eq,C1}	[kN]				1	0 • A _s • f	1)			
<u> </u>		_	<u> </u>			440		_		101		
Cross section area		As	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor		γMs,N	[-]					1,4 ²⁾				
	d concrete cone failure											
Characteristic bond res	istance in non-cracked co	oncrete C20/										
Temperature range I:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	14	14	13	13	12	12	11	11	11
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperature range II:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
60°C/43°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperature range III:		τ _{Rk,ucr}	[N/mm ²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°C/43°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
Characteristic bond res	istance in cracked concre	te C20/25										
	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm ²]	7,0	7,0	7,5	7,0	6,5	6,0	5,5	5,5	5,5
Temperature range I:	ury and wet concrete	τ _{Rk,eq,C1}	[N/mm ²]	5,9	7,0	7,1	6,4	6,2	5,7	5,5	5,5	5,5
40°C/24°C	flooded bore hole	τ _{Rk,cr}	[N/mm ²]	7,0	7,0	7,5	6,5	6,0	5,0	4,5	4,0	4,0
	lilooded bore fiole	τ _{Rk,eq,C1}	[N/mm ²]	5,9	7,0	7,1	6,0	5,7	4,8	4,5	4,0	4,0
	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm ²]	4,5	4,5	4,5	4,0	4,0	3,5	3,5	3,5	3,5
Temperature range II:	dry and wet concrete	τ _{Rk,eq,C1}	[N/mm ²]	3,7	4,5	4,3	3,7	3,8	3,3	3,5	3,5	3,5
60°C/43°C	flooded bore hole	τ _{Rk,cr}	[N/mm ²]	4,5	4,5	4,5	4,0	4,0	3,5	3,5	3,5	3,0
	nooded bole fible	τ _{Rk,eq,C1}	[N/mm ²]	3,7	4,5	4,3	3,7	3,8	3,3	3,5	3,5	3,0
	dm, and wat canarata	τ _{Rk,cr}	[N/mm ²]	4,0	4,0	4,0	3,5	3,5	3,0	3,0	3,0	3,0
Temperature range III:	dry and wet concrete	τ _{Rk,eq,C1}	[N/mm ²]	3,2	4,0	3,9	3,2	3,3	2,9	3,0	3,0	3,0
72°C/43°C	flooded bore bala	$\tau_{Rk,cr}$	[N/mm ²]	4,0	4,0	4,0	3,5	3,5	3,0	3,0	3,0	3,0
	flooded bore hole	τ _{Rk,eq,C1}	[N/mm ²]	3,2	4,0	3,9	3,2	3,3	2,9	3,0	3,0	3,0
		C2	5/30					1,02				
		C3	0/37	1,04								
Increasing factors for co	oncrete		5/45	1,04								
(For Static or quasi-stat	tic loading)											
Ψc			0/50					1,08				
		C4	5/55					1,09				
		C5	0/60					1,10				
Concrete cone failure		1.										
Non-cracked concrete		k _{ucr,N}	[-]					11,0				
Cracked concrete		k _{cr,N}	[-]					7,7				
Edge distance		C _{cr,N}	[mm]					$1,5 h_{ef}$				
Axial distance		S _{cr,N}	[mm]					2 c _{cr,N}				
Splitting failure		•										
	h/h _{ef} ≥ 2,0							1,0 h _{ef}				
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]				2 · h	ef 2,5 -	$\frac{h}{h_{ef}}$			
	h/h _{ef} ≤ 1,3	7						2,4 h _{ef}				
Axial distance		S _{cr,sp}	[mm]					2 c _{cr,sp}				
Installation factor (dry a	and wet concrete)		[-]			1,2		- ⊃cr,sp		1	,4	
matanation factor (dry a	and wet concrete)	γinst	[-]			1,2					,-1	

 $^{^{1)}}$ $f_{\rm uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Installation factor (flooded bore hole)

Apolo MEA Injections system Resifix Pure Epoxi for concrete	
Performances Characteristic values of tension loads under static, quasi-static action and seismic action (performance category C1)	Annex C 6

[-]

γinst

Table C7: Characterist seismic action						atic, c	uasi-	static	actio	n and	
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Charactaristic shaar resistance	V ⁰ _{Rk,s}	[kN]	0,50 • A _s • f _{uk} ¹⁾								
Characteristic shear resistance	V _{Rk,eq,C1}	[kN]	0,40 • A _s • f _{uk} ¹⁾				0,4	14 • A _s • f	: 1) uk		
Cross section area	As	[mm²]	50	79	113	154	201	214	491	616	804
Partial factor	γMs,∨	[-]	1,5 ²⁾								
Ductility factor	k ₇	[-]	1,0								
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	1.2 • W _{el} • f _{uk} ¹⁾								
Characteristic bending moment	M ⁰ _{Rk,eq,C1}	[Nm]	No Performance Determined (NPD)								
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γMs,V	[-]					1,52)				
Concrete pry-out failure											
Factor	k ₈	[-]					2,0				
Installation factor	γinst	[-]					1,0				
Concrete edge failure											
Effective length of fastener	l _t	[mm]				l _f = n	nin(h _{ef} ; 8	d _{nom})			
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	γinst	[-]					1,0				
Factor for annular gap	$lpha_{\sf gap}$	[-]					0,5 (1,0) ³)			

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars
2) in absence of national regulation
3) Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required.

Apolo MEA Injections system Resifix Pure Epoxi for concrete	
Performances Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)	Annex C 7

8.06.01-165/18 Z36416.18

Anchor size thread	led rod		М 8	M 10	M 12	M 16	M 20	M24	M 27	М 30
Non-cracked conc	rete C20/25 unde	r static and qua	si-statio	action				•		
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,035
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,140
Temperature range II:	δ _{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
60°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161
Temperature range III:	δ _{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
72°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161
Cracked concrete	C20/25 under sta	tic, quasi-static	and sei	smic C	1 action					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,032	0,032	0,037	0,042	0,048	0,053	0,058
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210
Temperature range II: 60°C/43°C	δ _{N0} -factor	[mm/(N/mm²)]	0,032	0,032	0,037	0,043	0,049	0,055	0,061	0,067
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240
Temperature range III:	δ _{N0} -factor	[mm/(N/mm²)]	0,032	0,032	0,037	0,043	0,049	0,055	0,061	0,067
72°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240
Cracked concrete	C20/25 under sei	smic C2 action								
Temperature range I:	$\delta_{N,eq(DLS)}$ -factor	[mm/(N/mm²)]			0,03	0,05				
40°C/24°C	δ _{N,eq(ULS)} -factor	[mm/(N/mm²)]	1		0,06	0,09				
Temperature range II:	δ _{N,eq(DLS)} -factor	[mm/(N/mm²)]		ormance	0,03	0,05	No Book			-L (NIDD)
60°C/43°C	δ _{N,eq(ULS)} -factor	[mm/(N/mm²)]	Deter (NF	mined PD)	0,06	0,09	No Performance Determined (NI			a (NPD)
Temperature range III:	$\delta_{N,eq(DLS)}$ -factor	[mm/(N/mm²)]	1 "	_,	0,03	0,05				
72°C/43°C	δ _{N,eq(ULS)} -factor	[mm/(N/mm²)]	1		0,06	0,09				
Calculation of the $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor	\cdot τ ; $\delta_{N,eq(I)}$	$_{DLS)} = \delta_{N,eq(DLS)}$ -factor $_{DLS)} = \delta_{N,eq(ULS)}$ -factor $_{DLS}$		τ: acti	on bond	stress for	tension			

Anchor size threaded rod				M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked and cracked concrete C20/25 under static, quasi-static and seismic C1 action										
All temperature ranges	δ _{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
	δ _{V∞} -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
			•	•	•					

Cracked concrete C20/25 under seismic C2 action

All temperature	$\delta_{V,eq(DLS)}$ -factor	[mm/kN]	No Performance Determined	0,2	0,1	No Performance Determined (NPD)
ranges	$\delta_{V,eq(ULS)}$ -factor	[mm/kN]	(NPD)	0,2	0,1	No Feriormance Determined (NFD)

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} ~\cdot \text{V}; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} ~\cdot \text{V}; \end{split}$$

V: action shear load

 $\delta_{V,eq(ULS)} = \delta_{V,eq(ULS)} \text{-factor } \cdot V;$

Apolo MEA Injections system Resifix Pure Epoxi for concrete	
Performances Displacements (threaded rods)	Annex C 8

8.06.01-165/18 Z36416.18

 $[\]delta_{\text{V,eq(DLS)}} = \delta_{\text{V,eq(DLS)}} \text{-factor } \cdot \text{V};$

Table C10: Dis	splacements	s under tension	load ¹⁾ (ii	nternally	threade	d sleeve))	
Anchor size intern	ally threaded s	sleeve	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked conc	rete C20/25 un	der static and quas	i-static ac	tion	•			
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,020	0,024	0,029	0,035
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,052	0,061	0,079	0,096	0,114	0,140
Temperature range II: 60°C/43°C	δ _{N0} -factor	[mm/(N/mm²)]	0,015	0,018	0,023	0,028	0,033	0,043
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,060	0,070	0,091	0,111	0,131	0,161
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,015	0,018	0,023	0,028	0,033	0,043
72°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,060	0,070	0,091	0,111	0,131	0,161
Cracked concrete	C20/25 under s	static and quasi-sta	tic action					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,032	0,037	0,042	0,048	0,058
40°C/24°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm²)]	0,210	0,210	0,210	0,210	0,210	0,210
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,037	0,043	0,049	0,055	0,067
60°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,037	0,043	0,049	0,055	0,067
72°C/43°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

τ: action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor } \cdot \tau;$

Table C11: Displacements under shear load¹⁾ (internally threaded sleeve)

Anchor size internally threaded sleeve			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20			
Non-cracked and cracked concrete C20/25 under static and quasi-static action											
All temperature	δ _{V0} -factor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04			
ranges	$\delta_{V\infty}$ -factor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06			

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor} \cdot V;$

V: action shear load

 $\delta_{V_{\infty}} = \delta_{V_{\infty}} \text{-factor } \cdot V;$

Apolo MEA Injections system Resifix Pure Epoxi for concrete

Annex C 9

Performances

Displacements (internally threaded sleeve)

Table C12: Displacements under tension load ¹⁾ (rebar)											
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked concrete C20/25 under static and quasi-static action											
Temperature range I: 40°C/24°C	δ_{N0} -factor	[mm/(N/mm²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
Temperature range II: 60°C/43°C	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Temperature range III: 72°C/43°C	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Cracked concrete C20/25 under static, quasi-static and seismic C1 action											
Temperature range I: 40°C/24°C	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,032	0,032	0,035	0,037	0,042	0,049	0,055	0,061
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210
Temperature range II: 60°C/43°C	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,032	0,037	0,040	0,043	0,049	0,056	0,063	0,070
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240
Temperature range III: 72°C/43°C	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,032	0,037	0,040	0,043	0,049	0,056	0,063	0,070
	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C13: Displacement under shear load 1) (rebar)

Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
For concrete C20/25 under static, quasi-static and seismic C1 action											
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \cdot V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \cdot V; \end{split}$$
V: action shear load

Apolo MEA Injections system Resifix Pure Epoxi for concrete			
Performances	Annex C 10		
Displacements (rebar)			

8.06.01-165/18 Z36416.18